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Estimating a density ratio model for stock market risk and option

demand
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Abstract

Option-implied risk-neutral densities are widely used for constructing forward-looking risk

measures. Meanwhile, investor risk aversion introduces a multiplicative pricing kernel between

the risk-neutral and true conditional densities of the underlying asset’s return. This paper

proposes a simple local estimator of the pricing kernel based on inverse density weighting, and

characterizes its asymptotic bias and variance. The estimator can be used to correct biased

density forecasts, and performs well in a simulation study. A local exponential linear variant

of the estimator is proposed to include conditioning variables. In an application, we estimate

a demand-based model for S&P 500 index options using net positions data, and attribute the

U-shaped pricing kernel to heterogeneous beliefs about conditional volatility.

Keywords: Density Forecasting, Nonparametric Estimation, Option Pricing, Trade Data

JEL Codes: C14, G13

1 Introduction

Option prices can be used to extract forward-looking, market-implied distributions for the pur-

pose of measuring and managing financial risk. However, they aggregate not only the beliefs

of investors, but also their risk attitudes. Together, these introduce a multiplicative deviation,

known as the pricing kernel, between the risk-neutral and true conditional densities of the un-

derlying asset’s return. The shape and dynamics of the pricing kernel are of intrinsic economic
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interest. Moreover, they can be used to ‘correct’ risk-neutral densities in order to more accurately

measure the conditional distribution of asset returns.

This paper proposes a simple local estimator of the pricing kernel, with several desirable prop-

erties. First, the estimator is nonparametric, which avoids imposing parametric functional form

restrictions on investor preferences, as emphasized by Aı̈t-Sahalia and Lo (2000). Second, the

estimator does not require specifying the conditional density of the underlying return directly,

thus avoiding Linn et al. (2017)’s critique of misspecifying the investor’s information set. Third,

it avoids global approximations of the pricing kernel, unlike other methods that meet the pre-

ceding points. Such methods require numerical optimization of the approximating coefficients,

for example based on the probability integral transforms (Linn et al., 2017), maximum likelihood

(Cuesdeanu and Jackwerth, 2018), or method-of-moments (Dalderop, 2021). These require a

growing number of coefficients to be optimized, which presents challenges for computation and

inference.

Instead, our kernel-smoothing estimator is easily computed by taking local averages of the

inverse of the risk-neutral density at the realized returns. It can be interpreted as a dynamic

version of the density bias correction by Jones et al. (1995), where instead of initial density

estimators, it now corrects initial predictive densities. We show that the estimator is consistent

for the multiplicative component in a general class of density ratio models, not restricted to

the setting of option-implied predictive densities. Furthermore, we prove that the estimator is

asymptotically Normal for a wide range of density-generating processes subject to certain moment

and mixing conditions. We provide analytical expressions of its asymptotic bias and variance,

and use these to characterize asymptotically optimal bandwidths. Moreover, we characterize the

asymptotic distribution of the corrected densities.

A simulation study confirms the good performance of the local estimator for realistic data-

generating processes and sample periods. In particular, the estimator outperforms or is at least

competitive with the correctly specified parametric maximum likelihood estimator at moderate

sample sizes, for both GARCH and stochastic volatility models. We compare four different plug-

in bandwidth methods, and find the estimators are not too sensitive to the method of pilot

estimator. The robust performance carries over to that of the corrected densities. Moreover,

we show that the estimator can be further improved by smoothly trimming small values of the

risk-neutral densities, which helps to reduce its variance in the tails of the distribution.

In most economic models, the pricing kernel depends on conditioning variables that affect the

stochastic discount factor, and thereby determine risk premia. To accommodate such variables,

we propose a local exponential linear variant of the estimator that guarantees a positive estimator
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and valid corrected density. When the locally parametric form is approximately correct, this

variant effectively reduces the bias and/or allows choosing a larger bandwidth to reduce the

variance relative to the locally constant estimator.

We apply our estimator to measure the impact of net demand on the pricing kernel (Garleanu

et al., 2008; Almeida and Freire, 2022). In particular, we model net demand for option contracts

by heterogeneous traders using a variant of the portfolio choice problem in Carr and Madan

(2001). We derive the equilibrium risk-neutral density as a risk-aversion weighted average of

investor’s subjective densities. By linking the latter to the true physical density, we derive a

density ratio model that expresses the pricing kernel in terms of investor’s net positions. Using

data on trader’s positions in S&P 500 index options, we find that the pricing kernel varies with

differences in subjective volatilities that we infer from investor’s net positions.

The remainder of this paper is organized as follows. Section 2 describes the local estimator and

its asymptotic properties in the setting of a density ratio model. Section 3 performs a simulation

study to assess the estimator’s performance for various bandwidth choices. Section 4 applies the

estimator to the pricing kernel in S&P 500 index options using net positions data. Section 5

concludes. All proofs are in the Appendix.

2 Estimator and asymptotic properties

This section introduces a density ratio model for the relation between some true and observed

conditional densities, and studies the asymptotic properties of simple nonparametric estimators

with and without observed covariates.

2.1 Density ratio model

Suppose the econometrician observes a set of density forecasts {qt(y)}Tt=1 that intend to describe

the conditional distribution of next period’s outcome variable Rt+1. Meanwhile, suppose that

the latter’s true conditional density ft(y) given the time-t information set Ft follows a general

density ratio model of the form

ft(y) = ctqt(y)m(y, xt), (1)

where m(y, x) is an unknown multiplicative function whose shape may change with observed

covariates xt, and ct =
(∫

qt(r)m(r, xt)dr
)−1

is the normalizing constant. Scaling m(y, x) by any

function of x does not change ft(y). Therefore, without loss of generality we assume E(ct | xt =

x) = 1 for all x. Values of m(y, x) different from one describe a density forecast bias, as they

indicate qt(y) under- or overstates the true density at y.
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Density ratio models of the form (1) arise naturally in the context of pricing options on the

underlying return Rt+1. In particular, no-arbitrage theory states that the price Ct(κ) of a call

option on R with strike price κ equals

Ct(κ) = Et

(
mt,t+1(Rt+1 − κ)+

)
, (2)

for some positive stochastic discount factor mt,t+1. Its conditional mean Et (mt,t+1) equals 1

Rf
t

,

where Rf
t is the return on a risk-free bond. Define also the conditional pricing kernel mt(y) ≡

E (mt,t+1 | Rt+1 = y,Ft). By the law of iterated expectations, (2) can then be represented as

Ct(κ) =
1

Rf
t

∫ ∞

0
(R− κ)+qt(y)dy,

in terms of a risk-neutral density qt(·) that relates to the physical density as

qt(y) = Rf
t ft(y)mt(y).

Therefore, (1) obtains as long as

mt(y) = δtm̃(y, xt), (3)

for some time-varying constants δt and covariate-dependent function m̃(y, x). In particular, (1)

then holds with m(y, x) = 1
m̃(y,x) and inverse normalization constant c−1

t = Rf
t δt.

A standard economic model that satisfies (3) is when investors have CRRA utility over wealth,

in which case mt,t+1 = δR−γ
t+1 for some time-discount factor δ and relative risk aversion γ (e.g.

Bliss and Panigirtzoglou, 2004). This can be extended to allow for stochastic time preferences

described by an arbitrary time-discount factor δt, as emphasized by Albuquerque et al. (2016).

The stochastic discount factor mt,t+1 may also depend on consumption or other macroeconomic

variables, in which case the projection mt(y) depends on their joint distribution with the return

R. Since economic theory may not prescribe appropriate functional forms, it is desirable not

to restrict m(y, x) parametrically. Furthermore, formulation (3) allows for flexible nonlinear

specifications of the pricing kernel, such as those by Rosenberg and Engle (2002) and Linn et al.

(2017). Here the constants δt make sure that the implied ft(y) are valid densities. Finally, it

allows for state-dependence in preferences which can described by observed covariates, such as

measures of volatility that may change the shape of the pricing kernel (Song and Xiu, 2016). Our

application in Section 4 illustrates this using proxies of trading imbalances to measure the impact

of net end-user demand on the pricing kernel. It motivates a formulation of (1) using a stylized
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equilibrium trading model, which relates m(y, x) to the preferences and beliefs of heterogeneous

investors and the constants ct to the Lagrangian multipliers of their budget constraints.

2.2 Estimator without covariates

First, we consider the case in which m does not depend on any covariates, that is, m(y, x) =

m(y).1 Let the data (qt(·), Rt+1)
T
t=1 consist of a time series of risk-neutral densities qt(·) for the

distribution of the return Rt+1 and the latter’s realizations. The density ratio model for the

conditional density ft(y) that generates Rt+1 then becomes

ft(y) =
qt(y)m(y)∫
qt(y)m(y)dy

, (4)

which by design integrates to unity. The multiplicative factor m(y) describes the (inverse) pricing

kernel, which can be interpreted as the marginal utility of investors as a function of the return

outcome. The multiplicative factor m is only identified up to scaling, so that we set E(ct) = 1

without loss of generality, where ct =
(∫

qt(y)m(y)dy
)−1

=
∫
ft(y)/m(y)dy, which is equivalent

to E
(

1
m(Rt+1)

)
= 1.

Based on the local multiplicative kernel density correction in Jones et al. (1995) and Hjort

and Glad (1995), we consider the following local estimator for m(y):

m̂(y) =
1

T

T∑
t=1

Kh(Rt+1 − y)

qt(Rt+1)
, (5)

where Kh(·) = 1
hK( ·

h) for some bandwidth h and symmetric kernel K(·) on R. The asymptotic

bias and variance of estimator (5) have simple analytical expressions. In particular, when h → 0,

its leading bias term follows from

E (m̂(y)) = E

(
Kh(Rt+1 − y)

qt(Rt+1)

)
= E

(∫
Kh(R− y)

qt(R)
ft(R)dR

)
= E (ct)

∫
Kh(R− y)m(R)dR

= m(y) +
µ2(K)

2
m′′(y)h2 + o(h2),

using the Law of Iterated Expectations in the second step, where µ2(K) =
∫
K(z)z2dz. As in

standard nonparametric regression, the asymptotic bias is determined by the curvature of the

1By a change-of-variable, this case also covers models where m(y, x) = m(G(y, x)) for some known transforma-
tion G that is monotonic in y for every x, such as the standardized excess return or probability integral transform.
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object of interest, and not on the outcome density or its derivatives. The asymptotic variance

and distribution of the estimator are established in the following result.

Assumption 1.

a) K is a symmetric bounded density with compact support

b) m(y) is twice differentiable

c) qt(Rt+1) > 0 a.s. and E
(

1
qt(y)2

| Rt+1 = y
)
< ∞

d) E(c2+δ
t ) < ∞ for some δ > 0

e) qt(R) = q(R, st) for some function q and state variables st such that (Rt+1, st) is stationary

and α-mixing with
∑∞

j=1 α(j)
δ

4+2δ < ∞

f) When T → ∞, h → 0, Th5 = O(1), and Thα0 → ∞ for some α0 >
3δ+4
δ+3

Theorem 1. Under Assumption 1, when T → ∞

√
Th
(
m̂(y)−m(y)−B(y)h2

) d−→ N(0,Ω(y)),

where B(y) = µ2(K)
2 m′′(y) and Ω(y) = R(K)m(y)E

(
ct

qt(y)

)
with R(K) =

∫
K(z)2dz.

Discussion of assumptions. Assumption 1c) contains a moment condition on the inverse risk-

neutral density, which ensures the variance of the estimator is finite. Assumption 1d) imposes

a moment condition on the normalization constant that is commonly imposed on the error in

nonparametric regression. It is satisfied when m(·) is bounded from below by a positive constant.

Otherwise, it prevents risk-neutral mass from concentrating in regions where m(y) is close to

zero. The mixing condition in Assumption 1e) is relatively weak, as the normalization constants

are the only predictable components in m̂(y). The state variables st that determine the shape

of qt(·) do not need to be observed or specified, thus accommodating a wide range of dynamic

latent variable models. Finally, Assumption 1f) provides upper and lower bounds on the rate at

which h becomes small.

Comparison to other estimators. Alternative nonparametric estimators involve global approx-

imations of the function m(y, x), such as orthogonal polynomials (Rosenberg and Engle, 2002)

or splines (Linn et al., 2017). Such methods nest the parametric specifications in Bliss and

Panigirtzoglou (2004). However, their consistency relies on increasing the approximation order

with the sample size, requiring high-dimensional optimization that involves repeated numerical
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integration for the constants ct. Furthermore, little is known about the asymptotic properties of

such estimators that depend on random densities, which complicates inference.2

Another advantage of the local estimator (5) is that it can accommodate observational errors

in the density forecasts qt(y). In particular, suppose one observes q̃t(y) = qt(y)zt(y), where zt(y)

is an i.i.d. multiplicative error with mean one. Then the bias of (5) is unchanged, even though its

variance increases. Moreover, if qt(y) is only observed on a range [yl, yu], then (5) can estimate

m(y) on this range as before, up to a boundary bias that could be corrected.3

2.3 Density forecast correction

The estimator m̂(y) can be plugged into (4) to estimate the normalization constants by

ĉt =

(∫
qt(y)m̂(y)dy

)−1

=

(
1

T

T∑
s=1

∫
qt(y)Kh(Rs+1 − y)dy

qs(Rs+1)

)−1

, (6)

and compute the multiplicatively corrected predictive densities as

f̂t(y) = qt(y)ĉt
1

T

T∑
s=1

Kh(Rs+1 − y)

qs(Rs+1)
, (7)

which by construction integrate to one.

From a forecasting perspective, it is useful to perform inference on the corrected version f̂t∗(y)

of any observed density qt∗(y) which may or may not have been included in the sample to estimate

m̂. Thereto, for any known function ω(y) define the weighted integral µω =
∫
m(y)ω(y)dy.

The following proposition characterizes the asymptotic error distribution of its plug-in estimator

µ̂ω =
∫
m̂(y)ω(y)dy.

Proposition 1. Let Assumption 1 hold. In addition, let ω(y) be twice differentiable,

E

((
ω(Rt+1)
qt(Rt+1)

)2+δ
)

< ∞ and Var
(
ω′′(Rt+1)
qt(Rt+1)

)
< ∞. When T → ∞ and h → 0, then µ̂ω − µω =

Op(h
2 + T− 1

2 ) and
√
T
(
µ̂ω − µω −Bωh

2
) d−→ N(0,Ωω),

where Bω = µ2(K)
2

∫
ω(y)m′′(y)dy and Ωω = Var

(
ω(Rt+1)
qt(Rt+1)

)
+ 2

∑∞
j=1Cov

(
ω(R1)
q0(R1)

,
ω(Rj+1)
qj(Rj+1)

)
.

Proposition 1 shows that the standard error of the weighted integral estimator shrinks at

the faster
√
T rate, although its bias is of the same order as that of m̂(y) pointwise. The

2Kapetanios et al. (2015) provide possibly related asymptotic theory for sieve estimators of the weighting
functions in density forecast combinations, under assumptions such as bounded input densities.

3This matters for risk-neutral densities, whose tails may not be reliably estimable due to sparse option trading
in corresponding strike prices.
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moment conditions control the tail behavior of the function ω(R) relative to qt(R). By setting

ω(y) = qt∗(y), it gives rise to the following corollary characterizing the asymptotic distribution

of the relative estimation error of f̂t∗(y).

Corollary 1. Let Assumption 1 and the additional conditions in Proposition 1 hold for the fixed

conditional density qt∗(y). Moreover, let Th4 → ∞. Then

√
Th

(
f̂t∗(y)− ft∗(y)

ft∗(y)
− h2

(
B(y)

m(y)
− ct∗Bc

))
d−→ N

(
0,

Ω(y)

m(y)2

)
,

where Bc =
µ2(K)

2

∫
qt(y)m

′′(y)dy.

Corollary 1 shows that when the sample period increases, the density estimation error is of the

same order as m̂(y), and is not affected by any time series dependence. The assumption that qt∗(y)

is fixed is thus merely for simplicity, as under the mixing conditions any dependence between

qt∗(·) and {qs(·)}Tt=1 is asymptotically irrelevant. The estimation error in ĉt∗ adds an additional

bias term to the density estimation error, but does not affect its variance as the normalization

constants are estimated as the faster
√
T rate by Proposition 1.

2.4 Adding covariates

Let xt be some covariates that are thought to explain time-variation in the multiplicative bias in

observed predictive densities qt(y). Consider the general formulation

ft(y) = ctqt(y)m(y, xt),

where ft(y) describes the conditional density of the outcome variable Rt+1 given information

available at time t, and ct =
(∫

qt(r)m(r, xt)dr
)−1

is the normalizing constant. Without loss of

generality, we normalize E(ct | xt = x) = 1 for all x. Let K(·) be a symmetric density function

on R and Kh(·) = 1
hK( ·

h) for some bandwidth h. Then

E

(
Kh(Rt+1 − y)

qt(Rt+1)
| xt = x

)
= E

(∫
Kh(R− y)

qt(R)
ft(R)dR | xt = x

)
= E (ct | xt = x)

∫
Kh(R− y)m(R, x)dR

= m(y, x) +
µ2(K)

2

∂2m(y, x)

∂2y
h2 + o(h2).

8



Therefore, the following Nadaraya-Watson type estimator of m(y, x) is asymptotically unbiased:

m̂(y, x) =

T∑
t=1

Kh(Rt+1 − y)

qt(Rt+1)
wT (xt, x), (8)

when h → 0 and hx → 0, where wT (xt, x) =
Khx (xt−x)∑T
t=1 Khx (xt−x)

are kernel-smoothing weights for the

covariate dimension with bandwidth hx. Still, local linear estimators are typically preferred over

the locally constant estimator (8) for their reduced bias. However, the local linear estimator is

not guaranteed to be positive, and thus to produce valid corrected densities.

Instead, we propose estimating the positive multiplicative factor m(y, x) as m̂(y, x) = exp(β̂0),

based on the local linear fit with an exponential link function:

β̂ = argmin
β∈Θ

QT (y, x, β) (9)

QT (y, x, β) =
1

T

T∑
t=1

(
Kh(Rt+1 − y)

qt(Rt+1)
− exp (β0 + β1(xt − x))

)2

Khx(xt − x).

for some parameter space Θ. Related estimators have been studied by Gozalo and Linton (2000)

and Hyndman and Yao (2002). Specifically, Gozalo and Linton (2000) consider a local nonlinear

least squares method to estimate a regression function nonparametrically based on an initial para-

metric model. Meanwhile, Hyndman and Yao (2002) use a local exponential fit to estimate the

conditional densities. Our objective applies local least squares to fit Kh(Rt+1−y)
qt(Rt+1)

, thus combining

elements of regression and density estimation.

The F.O.C. of the local least squares criterion (9) are

0 =
∂

∂β
QT (y, x, β̂) = − 2

T

T∑
t=1

(
Kh(Rt+1 − y)

qt(Rt+1)
− exp

(
β̂T x̃t

))
exp

(
β̂T x̃t

)
x̃Tt Khx(xt − x),

where x̃t = (1, xt − x)T . We prove that the locally estimated coefficients β̂ consistently estimate

the population coefficients β0 that match the first two derivatives of the target and exponential

link functions:

β00 = logm(y, x)

β01 =
∂

∂x
logm(y, x).

Assumption 2.

a) β0 is an interior point of the compact parameter space Θ
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b) K is a symmetric bounded density with compact support

c) m(y, x) is twice continuously differentiable

d) qt(Rt+1) > 0 a.s. and E
(

1
qt(y)2

| Rt+1 = y, xt = x
)
< ∞

e) E(c2+δ
t | xt = x) < ∞ for all x and some δ > 0

f) qt(R) = q(R, st, xt) for some function q and state variables st such that (Rt+1, st, xt) is

stationary and α-mixing with
∑∞

j=1 α(j)
δ

2+δ < ∞

g) When T → ∞, h → 0, hx = cxh for some cx > 0, Th6 = O(1), and Thα0 → ∞ for some

α0 > max{2 + δ, 3}

Theorem 2. Under Assumption 2, when T → ∞

√
Th2H

(
β̂ − β0 − h2b(x, y)

)
d−→ N (0,Ω(x, y)) ,

where H = diag(1, hx), and b(x, y) and Ω(x, y) are given in the proof in the Appendix.

In particular, using the delta method, Theorem 2 implies the following limiting distribution

of the pricing kernel estimator m̂(y, x) = exp(β̂0):

√
Th2

(
m̂(y, x)−m(y, x)− h2bm(y, x)

) d−→ N
(
0, σ2

m(x, y)
)
,

where

bm(y, x) =
1

2
µ2(K)

(
myy(y, x) +

(
mxx(y, x)− β2

01m(y, x)
)
c2x
)

σ2
m(y, x) = m(y, x)f(x)−1c−1

x R0(K)2E

(
ct

qt(y)
| xt = x

)
.

The asymptotic bias of m̂(y, x) has two components, reflecting smoothing in the return and

covariate dimensions. The former is proportional to myy(y, x), and does not depend on the

choice of local parametric model. The second term is proportional to mxx(y, x) − β2
01m(y, x).

The closer m(y, x) is to being exponential in x, the closer this bias component is to zero. As

a result, if the true pricing kernel is approximately exponential in the covariate, the locally

exponential estimator will have smaller bias than the local constant estimator (8) for a given

bandwidth. Moreover, the optimal bandwidth will be larger, allowing to reduce the variance of

the estimator. Finally, introducing the covariate allows the slightly weaker mixing condition 2f),

as localizing in xt diminishes any serial correlation in the summands of QT .
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3 Simulation study

We perform a simulation study to assess the finite-sample performance of the kernel estimator for

various bandwidth choices, and compare their performance with the correctly specified parametric

estimator.

3.1 Bandwidth choices

The asymptotic Mean Squared Error (MSE) of the estimator m̂(y) in (5) equals

MSET (y) = B(y)2h4 +
Ω(y)

Th
.

The MSE-optimal bandwidth therefore varies with y according to

hMSE(y) =

(
Ω(y)

4B(y)2T

) 1
5

. (10)

Similarly, the asymptotic Integrated weighted Mean Square Error (IMSE), defined as
∫
MSET (y)f(y)dy

with f(y) the unconditional density, is minimized by

hIMSE =

( ∫
Ω(y)f(y)dy

4
∫
B(y)2f(y)dyT

) 1
5

. (11)

The integrated variance term equals

∫
Ω(y)f(y)dy = R(K)

∫
E

(
ft(y)

qt(y)2

)
f(y)dy = R(K)E

(
f(Rt+1)

q2t (Rt+1)

)
,

using the relation E
(
m(y) ct

qt(y)

)
= E

(
ft(y)
qt(y)2

)
. However, it may not be finite due to small values

of q2t (y) in the denominator. Therefore, for the simulations we consider the truncated IMSE over

a large but finite range, and set the plug-in IMSE bandwidths based on the corresponding definite

integrals of B(y) and Ω(y).

We estimate the optimal bandwidths by plugging-in initial estimates of the components Ω(y)

and B(y) in (10) and (11). Both components depend on the unknown function m(y), for which

we consider two initial estimators m̂int(y). The first fits an initial parametric model m(y; θ), with

the parameter θ estimated by maximum likelihood. The second is the nonparametric estimator

(5) with a pilot bandwidth of two times Silverman’s rule-of-thumb bandwidth for kernel density

estimation. The local bias is then estimated as B̂(y) = µ2(K)
2 m̂′′

int(y) and the local variance as

Ω̂(y) = R(K)m̂int(y)
1
T

∑T
t=1

ĉt
qt(y)

, with ĉt the plug-in normalization constant (6). The IMSE
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optimal bandwidth then integrates these components with respect to an initial kernel density

estimator f̂h(y). Finally, we use the resulting estimator m̂(y) to compute an iterated version of

the optimal plug-in bandwidth.

3.2 Simulation design

The pseudo-code in Algorithm 1 describes our simulation design.

Algorithm 1: Simulation algorithm for pricing kernel estimators

for s = 1 : S do
for t = 1 : T do

- Compute model-based conditional density fts(y)
- Generate return as Rt+1,s = F−1

ts (U), where U ∼ Uniform(0, 1)
- Compute risk-neutral density qts(y) ∝ fts(y)m0(y)

end
Compute pricing kernel estimators m̂s(y) based on (qts, Rt+1,s)

T
t=1

end

DGPs. We consider two data-generating process for the conditional physical densities of

the returns. First, we consider a discrete-time AR(1)-GARCH(1,1) model with t-distributed

errors, with parameters set to their maximum likelihood estimates fitted to the S&P 500 index

options and returns in our empirical application. Second, we consider the single-factor stochastic

volatility model described by

dFt

Ft
= rdt+

√
VtdBt + (J − 1)dN(t),

dVt = κ(Θ− V (t))dt+ γ
√

VtdWt,

where the Brownian motions Bt and Wt are mutually correlated, but independent of the jump

process N(t) with Poisson jump times and lognormal jump sizes. The parameters are set as the

estimates in Bates (2000) based on the likelihood of returns.

For the true pricing kernel, we consider a exponential-quartic model, which allows capturing

the main nonlinear shapes documented in the literature. In particular, we set m0(y) = m(y; γ0)

where

m(R; γ) = exp

(
4∑

l=1

γl

(
1

2
logR

)l
)
,

and γ0 is chosen by maximum likelihood on the sample used in our application, but without

the dampening factor 1
2 . Using the dampened model as the DGP enhances the stability of the

parametric maximum likelihood estimator, which we describe next.

Estimators. Besides the local nonparametric estimators, we include the correctly specified

12



exponential-quartic model and estimate it by maximum likelihood. With L = 4, this results in

the pricing kernel estimates m(y; γ̂L), where

γ̂L = argmax
γ

T∑
t=1

L∑
l=1

γl(logRt+1)
l − log

∫
qt(y) exp

(
L∑
l=1

γl(log y)
l

)
dy.

We consider the nonparametric local estimators with four plug-in bandwidth choices. They differ

by whether the optimal bandwidths are based on an initial nonparametric or parametric esti-

mator, for which we use slightly misspecified exponential-cubic estimator m(y; γ̂3), and whether

or not they iterate the plug-in bandwidth computation.4 We also include a smoothly trimmed

version of the local estimator, defined as

m̂trim =
1

T

T∑
t=1

Kh(Rt+1 − y)

qt(Rt+1)
S

(
qt(Rt+1)

τT

)
, (12)

where S is a CDF with S(0) = 0 and S(1) = 1, and τT a vanishing trimming parameter. The

trimming serves to stabilize the tails of m̂(y) in the presence of small values of qt(Rt+1). We set S

as the Beta(2, 2) CDF following Linton and Xiao (2007), and τT as the 0.01-quantile of qt(Rt+1).

For all estimators, we report the simulated performance of their scaled versions, defined as

m̂sc(y) = m̂(y)
1

T

T∑
t=1

ĉt,

with ĉt the plug-in normalization constants (6). The scaling enforces the sample version of the

theoretical constraint E(ct) = 1, and serves to reduce the variance.

3.3 Results

Table 1 reports the simulation performance of the estimators for varying sample sizes. For both

models considered, all nonparametric estimators outperform the correctly specified parametric

estimator at the smallest sample size (T = 60) and remain competitive at the medium sample size

(T = 120). Only at the largest size (T = 240) does the parametric maximum likelihood estimator

outperform all nonparametric estimators, due to its faster convergence rate. Thus, two decades

of monthly data would be needed for the exponential-quartic estimator to outperform, even in

the ideal case of correct specification. Meanwhile, the simple nonparametric estimator performs

reliably at all sample sizes, and is robust against functional form misspecification. Its performance

4Variable bandwidths perform broadly similar to fixed bandwidths in terms of the truncated IMSE, and its
results are therefore omitted. However, they allow increased bandwidths in the tails of the distribution to combat
the increased variance there.
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under four different plug-in bandwidths is broadly similar, indicating low sensitivity to the choice

of pilot estimator m̂int. Only bandwidths based on an initial parametric fit tend to benefit

from the iteration step, at least for the GARCH model, where those based on a nonparametric

pilot estimator are more precise without iteration. Finally, smooth trimming benefits the local

estimators by bringing down their variance substantially without incurring a similar increase in

the bias. Its robust performance is remarkable given the simple 1% trimming rule used, and could

be improved further by optimizing the trimming threshold and/or correcting the trimming bias

(e.g. Sasaki and Ura, 2022). The simulation performance for the estimators without scaling are

very similar, except for increased variability of the ‘h-par’ estimator, and are reported in Table 3

in the Appendix.

Table 1: Simulation performance of various estimators under exponential-quartic pricing kernel,
based on S = 10, 000 simulated time series of densities and returns according to two models. Opti-
mal plug-in bandwidths chosen based on initial exponential-cubic (h-par) or local ratio estimator
(h-pilot). Columns describe integrated weighted squared bias, variance, and mean squared error
of scaled estimators m̂sc(y), truncated at the (0.025,0.975)-quantiles of the return distribution,
for three numbers of months T .

(a) AR(1)-GARCH(1,1)-t-model

T = 60 T = 120 T = 240

m̂ IBias2 IVar IMSE IBias2 IVar IMSE IBias2 IVar IMSE

exp-quart 0.15 4.32 4.47 0.08 1.87 1.95 0.03 0.80 0.83

h-par 0.16 3.28 3.43 0.10 2.13 2.23 0.03 1.43 1.46

h-par iter 0.12 3.36 3.48 0.05 1.89 1.94 0.02 1.06 1.08

h-par trim 0.19 2.80 2.99 0.20 1.42 1.63 0.17 0.75 0.92

h-pilot 0.05 3.57 3.62 0.02 2.07 2.09 0.01 1.05 1.07

h-pilot iter 0.06 3.89 3.94 0.02 2.23 2.25 0.01 1.14 1.15

h-pilot trim 0.10 3.56 3.66 0.12 1.96 2.08 0.13 0.95 1.08

(b) Bates (2000) stochastic volatility-model.

T = 60 T = 120 T = 240

m̂ IBias2 IVar IMSE IBias2 IVar IMSE IBias2 IVar IMSE

exp-quart 0.12 3.14 3.26 0.05 1.30 1.35 0.03 0.54 0.56

h-par 0.20 2.32 2.52 0.15 1.55 1.70 0.07 0.84 0.91

h-par iter 0.14 2.39 2.53 0.08 1.59 1.67 0.03 0.90 0.93

h-par trim 0.17 2.17 2.35 0.18 1.23 1.40 0.13 0.59 0.72

h-pilot 0.07 2.28 2.35 0.04 1.63 1.67 0.02 0.93 0.95

h-pilot iter 0.06 2.57 2.63 0.04 1.79 1.83 0.02 1.02 1.04

h-pilot trim 0.08 2.43 2.51 0.08 1.60 1.69 0.08 0.82 0.89
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Figure 1 shows the simulated densities of plug-in fixed bandwidths based on the asymp-

totic IMSE under the Bates (2000) stochastic volatility-model. Bandwidths based on an initial

exponential-cubic fit tend to centered around the infeasible optimal value, but display consid-

erable right skewness. This pattern can be explained by the high volatility of the parametric

fit, which may occasionally yield nearly flat estimates that underestimate the bias. Meanwhile,

bandwidths based on the nonparametric pilot estimator appear symmetric and are less volatile,

but have a downward bias at all sample sizes, suggesting these may be undersmoothing. The

bandwidth densities for the GARCH model in Figure 12 in the Appendix show similar patterns.

The fact that either plug-in bandwidth method has a substantial mean squared deviation from

the optimal value suggests the performance of the nonparametric estimators in Table 1 could still

be improved.

Figure 1: Simulated densities of plug-in asymptotic IMSE optimal fixed bandwidths under the
Bates (2000) stochastic volatility-model, using initial exponential-cubic (h-par) and local pilot
(h-pilot) estimators, for S = 10, 000 simulated time series and sample sizes T = {60, 120, 240}
months. IMSE truncated at (0.025,0.975)-unconditional quantiles. Vertical lines show corre-
sponding optimal bandwidths if m0 were known.

Figures 2 and 3 show the simulated mean and pointwise quantiles of the estimators m̂ for the

GARCH and stochastic volatility models, respectively. The plots highlight that the nonparamet-

ric estimators outperform the correctly specified parametric estimator in the middle part of the

distribution, where the former have smaller bias but a roughly similar variance. The negative

bias of the local estimators in the right tail is explained by the convexity of the true function m0.

The variance of all estimators increases substantially in the tails of the distribution due to the

sparse observations there, and for the local estimators due to dividing by small qt(Rt+1). This

effect is most pronounced for the the GARCH model, which has thinner tails than the stochastic

volatility model, and especially for the left tail. Still, trimming the local estimators yields more

precision in the tails than the parametric estimators, without creating much larger bias.
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(a) Exponential-quartic estimator.
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(b) Local ratio estimator.
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(c) Trimmed local ratio estimator.
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(d) Exponential-quartic estimator.
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(e) Local ratio estimator.
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(f) Trimmed local ratio estimator.
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(g) Exponential-quartic estimator.
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(h) Local ratio estimator.
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(i) Trimmed local ratio estimator.

Figure 2: Simulated estimates m̂sc of the inverse pricing kernelm0 under the AR(1)-GARCH(1,1)-
t model, together with simulated pointwise 95% CIs, based on S = 10, 000 simulated time series.
Local estimators use plug-in bandwidths based on initial exponential-cubic fit and one iteration.
Rows vary with T = {60, 120, 240} months, columns with type of estimator.

Finally, Table 2 reports the simulated mean integrated squared density estimation error

MISDE = E

(∫ (
f̂t(y)− ft(y)

)2
dy

)

for the considered pricing kernels estimators m̂. The density estimates are invariant to any

scaling of m̂. The performance of the corrected conditional density estimators follows that of the

pricing kernel estimators, with the nonparametric estimators outperforming at T = 60 and being
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(a) Exponential-quartic estimator.
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(b) Local ratio estimator.
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(c) Trimmed local ratio estimator.
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(d) Exponential-quartic estimator.
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(e) Local ratio estimator.
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(f) Trimmed local ratio estimator.
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(g) Exponential-quartic estimator.
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(h) Local ratio estimator.
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(i) Trimmed local ratio estimator.

Figure 3: Simulated estimates m̂sc of the inverse pricing kernel m0 under the Bates (2000)
stochastic volatility-model, together with simulated pointwise 95% CIs, based on S = 10, 000
simulated time series. Local estimators use plug-in bandwidths based on initial exponential-
cubic fit and one iteration. Rows vary with T = {60, 120, 240} months, columns with type of
estimator.

competitive at T = 120, and the parametric estimator outperforming at T = 240. Selecting plug-

in bandwidths without iteration is preferred for both types of initial estimators. Furthermore,

the local estimators again favor some trimming, which particularly helps to stabilize the tails of

the conditional density estimates.
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Table 2: Simulated mean integrated square density estimation error for various estimators m̂
under exponential-quartic pricing kernel, based on S = 10, 000 simulated time series of densities
and returns according to two models and sample sizes T = {60, 120, 240} months. Optimal
plug-in bandwidths minimize IMSE truncated at the (0.025,0.975)-unconditional quantiles using
initial exponential-cubic (h-par) and local pilot (h-pilot) estimators.

(a) AR(1)-GARCH(1,1)-t-model

m̂ T = 60 T = 120 T = 240

exp-quart 17.17 7.60 3.43

h-par 10.90 7.18 4.93

h-par iter 12.15 7.63 5.46

h-par trim 10.24 5.77 3.58

h-pilot 12.72 8.28 5.57

h-pilot iter 14.47 9.20 6.20

h-pilot trim 12.37 7.35 4.19

(b) Bates (2000) stochastic volatility-model.

m̂ T = 60 T = 120 T = 240

exp-quart 15.29 6.47 2.77

h-par 11.31 7.71 4.49

h-par iter 11.98 8.36 4.96

h-par trim 10.77 6.59 3.51

h-pilot 11.15 8.85 5.40

h-pilot iter 12.96 10.20 6.28

h-pilot trim 11.71 8.16 4.42

4 Empirical application

This section applies the local density ratio estimator to S&P 500 index returns using option price

and trade data. The first subsection describes our data set, the second estimates the pricing

kernel without conditioning variables, and the third estimates a model with heterogeneous option

investors using net demand data.

4.1 Data description

We construct our sample (Rt+1, qt(·), xt)Tt=1 of returns, risk-neutral densities, and conditioning

variables, as follows. For each month from January 1996 until February 2023, we consider option

prices from OptionMetrics on contracts that expire on the last expiration date with options

actively traded 28 days prior (typically the last Friday).5 Focusing on contracts with one month

or shorter time-to-maturity avoids small sample sizes. The risk-neutral density at a given month

t is estimated based on the Breeden and Litzenberger (1978) result

qt(κ) = er
f
t
∂2

∂2κ
Et (Cit|κit = κ) ,

where (Cit, κit)
Nt
i=1 is a cross-section or rolling window of end-of-day call option mid prices (possi-

bly obtained by put-call parity) with corresponding moneyness levels observed at or around time

t, and the risk-free rate rft ensures qt(·) integrates to one. When the number of recorded strike

prices Nt goes to infinity, the call pricing function and its second derivative can be consistently

5We define actively traded as at least 40 strike prices being listed, which removes 60 out of 235 months.
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estimated using nonparametric methods such as kernel smoothing or series approximation. In

particular, we estimate monthly risk-neutral densities using the local cubic method in Dalderop

(2020), based on variable plug-in bandwidths obtained by fitting an initial Bates (2000) stochas-

tic volatility model. Furthermore, we compute the realized S&P 500 index return Rt+1 over the

option holding period.

Our application to demand-based pricing kernels in Section 4.3 uses measures of trade imbal-

ances as the conditioning variable xt. These net demand proxies are obtained from the CBOE

OpenClose Volume data set, which contains daily net trading positions in European option con-

tracts on the S&P 500 index over the period 1996-2017. The trading positions are disaggregated

by investor type (firm or customer) and three size categories. This categorization of buyers and

sellers of each transaction allows tracking the direction of trades, rather than just trading volume,

and thereby allows identifying the characteristics of heterogeneous investors in our model. We

merge the positions data with the corresponding option prices obtained from OptionMetrics, as

described in more detail in Subsection 4.3.2.

4.2 Time-invariant pricing kernels

First, we consider the case without covariates. To help understand the local estimator, Figure

4 plots the realized inverse densities and the inverse of the unconditional smoothed density for

varying return levels. Estimator (5) takes kernel-weighted averages of 1/qt(Rt+1) locally around

R ≈ y. Meanwhile, when qt(R) = q(R, st) for some state variables st with continuous density,

then

E

(
1

qt(Rt+1)
| Rt+1 = y

)
=

∫
1

q(y | s)
f(s | Rt+1 = y)ds

=

∫
f(y | s)
q(y | s)

f(s)

f(y)
ds =

m(y)

f(y)
,

using model equation (4) in the last step. Therefore, values 1
qt(Rt+1)

> 1
fh(Rt+1)

for realizations

Rt+1 ≈ y indicate that m(y) > 1, and vice versa. Figure 4 shows no clear deviation between

both inverse densities in the middle part of the return distribution, suggesting m(y) is close to

one there. Meanwhile, in the left tail qt(Rt+1) tends to be larger than fh(Rt+1), suggesting m(y)

is above one in this region, although the variability of 1/qt(Rt+1) also increases in the tails.

Figure 5 shows the estimates of m(y) and its inverse, the pricing kernel, using fixed plug-in

bandwidth. Their local confidence intervals are obtained by plugging m̂h into the asymptotic

variance in Theorem 1, and using the delta-method to compute standard errors for the pricing

kernel from those of its inverse. The left panel estimate shows a similar shape as the exponential-
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Figure 4: Scatterplot of 1/qt(Rt+1) against the monthly return on the S&P 500 from January
1996 to August 2023, together with plot of the inverse unconditional smoothed density fh(R)
based on Silverman’s rule-of-thumb bandwidth.

quadratic model used for the simulation study, which was fitted to the same data. In particular,

m̂h(y) shows a concave pattern reaching its peak for returns around one. This translates into a

U-shaped pricing kernel in the right panel, which increases in both tails of the return distribution,

though especially in the left.
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(a) Estimated inverse pricing kernel.
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(b) Estimated inverse pricing kernel.

Figure 5: Local density ratio estimator m̂h (left panel) with fixed plug-in bandwidth and corre-
sponding pricing kernel (right panel) based on monthly S&P 500 index options and returns from
January 1996 to August 2023. CIs based on plug-in standard errors and delta-method.

Figure 6 shows the resulting multiplicatively adjusted option-implied densities (7) for the fixed

plug-in bandwidth. Multiplying the original risk-neutral densities by the hump-shaped inverse

pricing kernel dampens the probability mass in the tails and lifts it in the center. As a result,

conditional volatilities are typically adjusted downwards, especially when they are high, and

therefore fluctuate less over time as shown in Figure 7. More generally, the likelihood of left-tail

risks is lower and more stable under the physical than the risk-neutral distribution.
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(a) Original densities. (b) Corrected densities.

Figure 6: Original (left) and multiplicatively corrected (right) option-implied conditional densi-
ties, using the local estimator with bandwidth ĥIMSE , for the monthly return on the S&P 500
from January 1996 to August 2023.
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Figure 7: Original and multiplicatively corrected option-implied volatility forecasts of the monthly
return on the S&P 500 from January 1996 to August 2023. Local pricing kernel estimated with
fixed bandwidth ĥIMSE .

4.3 Demand-based pricing kernels

This section formulates and estimates a model for the impact of net demand for options on the

ratio between the physical and risk-neutral densities, or the pricing kernel. This is motivated

by empirical evidence for such impact by Easley et al. (1998), Pan and Poteshman (2006) and

Bollen and Whaley (2004), among others, and theoretically underpinned by market-makers facing

unhedgeable positions (Garleanu et al., 2008; Chen et al., 2019) and/or inventory constraints
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(Fournier and Jacobs, 2020). Similar to recent work of Almeida and Freire (2022) based on option

returns, we investigate the shape of conditional pricing kernels, which we estimate directly.

First, we discuss a stylized heterogeneous-agent equilibrium model that connects the subjec-

tive, physical, and risk-neutral densities. We then use this model to formulate and interpret a

density ratio model, and study its local kernel-based estimation.

4.3.1 Heterogeneous investor model

Consider i = 1, . . . , N investors with subjective belief densities fit for the stock return Rt+1,

utility Ui over wealth, and owner share ω0
i of the stock. Following Carr and Madan (2001),

investors trade a continuum of a contracts on Rt+1 and choose portfolios ϕit(Rt+1) according to

max
ϕit(·)

∫ ∞

0
Ui(ϕit(R))fit(R)dR

s.t. e−rft

∫
ϕit(R)qt(R)dR ≤ ω0

i Sit,

where qt(R) is the Arrow-Debreu state-price density, and Sit the initial stock price. The optimal

portfolio of investor i then satisfies

U ′
i(ϕit(R)) = λit

fit(R)

qt(R)
,

where λit is the Lagrangian multiplier for the budget constraint. Under exponential utility

Ui(w) = − 1
γi
exp(−γiw), the optimal portfolio can be solved explicitly as

ϕit(R) = µit +
1

γi
log

f
(i)
t (R)

qt(R)
, i = 1, . . . , N.

The equilibrium stock market clearing condition
∑N

i=1 ϕit(R) = R implies

qt(R) = ct exp

(
β0R+

∑
i

βi1 log fit(R)

)
,

where β0 =
∑N

i=1 ω
0
i∑N

i=1
1
γi

, βi =
1
γi∑N

i=1
1
γi

, and ct is the normalizing constant.

Furthermore, suppose the true ft and subjective densities fit are of the form

log ft(R) ∝
∑
k

stkgk(R), log fit(R) ∝
∑
k

sitkgk(R), stk =
∑
i

θiksitk,

for some basis functions (gk)
K
k=1 and weights such that

∑
i θik = 1 for all k. For example, K = 2

22



describes Normal densities with possible disagreement about its mean and variance. Then

log ft(y) ∝ log qt(R)− β0R+
∑
i,k

θiks̃itkgk(R), (13)

where s̃itk = sitk−
∑

i βisitk center the subjective moments by their risk-aversion weighted means.

In equilibrium, investor i holds net derivative positions ω in R according to

ωit(R) = constit + (βi − ω0
it)R+

1

γi

∑
k

s̃itkgk(R), (14)

where ω0
it are stock positions. Therefore, given data on ωit(R), we can identify coefficients 1

γi
s̃itk

by functional regression of ωit(R) on R. Plugging these into (13) yields a density ratio model

that is parametric in terms of observed covariates.

4.3.2 Option net demand curves

We construct the empirical counterpart to ωit using an investor’s net number of contracts

(dCijt, d
P
ijt) in call and put options with moneyness level κjt, and payoff functions (R − κjt)

+

and (κjt−R)+, respectively. For simplicity, suppose there only N = 2 investors, namely market-

makers and end-users, which take opposite positions so that we drop the i subscript hereafter.

The non-market maker’s total net payoff upon the realization Rt+1 = R equals

ωtN (R) = ωC
tN (R) + ωP

tN (R), (15)

which sums up the payoffs from call and put options

ωC
tN (R) =

Nt∑
i=1

dCik(R− κit)
+, ωP

tN (R) =

Nt∑
i=1

dPik(κit −R)+.

The payoff function ωtN (R) can be interpreted as the equilibrium net demand by non-market

markers for Arrow-Debreu type securities that pay off in the event Rt+1 = R. Unlike the call and

put option net demand curves, the net demand for such assets do not compound the demand for

payoffs over a range of outcomes.

For each listed strike Ki, we accumulate net demand dct(Ki) =
∑

t−60≤s≤t ds(Ki) over the

preceding two months from daily net positions calculated as

ds(K) = BuyOpens(K)− BuyCloses(K)− SellOpens(K) + SellCloses(K)
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in contracts with the same strike price, put-call type, and maturity date.6 We then match

the accumulated demand dct(Ki) to the forward moneyness levels κit = Ki
Ft
, and compute the

estimated net demand curves ω̂t(R) using formula (15).

Figure 8a) shows the total monthly net option payoff ωt(R) defined in (15) as a function of

the potential end-of-month return R based on positions accumulated by the start of the month.

Large imbalances occurred during the 2008-2009 financial crisis, when the sign of the net payoffs

for negative returns rapidly changed. To improve comparisons over time, Figure 8b) shows the

normalized net payoffs

ω̃c
t (R) =

ωc
t (R)∫

|ωc
t (y)|qt(y)dy

,

where the net profit curves ωc
t (R) = ωt(R) − πt(ωt) are centered by the market value of all

positions:

πt(ωt) =

∫ ∞

0
ωt(y)qt(y))dy.

By construction, the market value of the option portfolio with payoff function ωc
t (R) is zero.

The denominator in ω̃c
t reflects the market value of the absolute payoffs, ensuring that −1 ≤

ω̃c
t (R)qt(R) ≤ 1. The shape of the normalized payoff functions varies rapidly from month to

month, with the signs of net positions for both small and large returns alternating frequently.

Net positions for negative returns were most positive during the 2008-2009 financial crisis, yet

turned negative afterwards.

(a) Total net payoffs. (b) Normalized net payoffs.

Figure 8: Monthly non-market maker payoffs for the event Rt+1 = κ as traded in the preceding
two months. Sample period shown is 1996-2017 and contains contracts with 28 days to maturity.

To construct the covariates in density ratio model (13), we estimate the coeffients in (14) for

6Using a cut-off prevents ‘stale’ positions from dominating the monthly demand curves. Using alternative
cut-offs of one or three months yields similar findings.
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Figure 9: Monthly end-user net demand for synthetic return (left) and squared return (right),
accumulating positions over the preceding two months.

some basis function (gk)
K
k=1 by minimizing the weighted least squares criterion

min
b

∫ (
ωt(y)− bT g(y)

)2
qt(y)dy,

which has solution

b̂t =

(∫
g(y)g(y)T qt(y)dy

)−1 ∫
g(y)Tωt(y)qt(y)dy.

Setting the basis functions g(r) = (1, r, r2), we can proxy net demand for ‘directional’ and

‘variance risk’ by their fitted coefficients b̂t. Figure 9 plots the resulting net demand proxies over

time, which are strongly negatively correlated. Focusing on net variance demand, we see that

end-users switched from buying protection against high values of the squared return, to selling it

in the aftermath of the financial crisis, when the price of such protection rose dramatically.

4.3.3 Bandwidth choice

The asymptotic Mean Squared Error (MSE) of the estimator m̂(y, x) equals

MSET (y, x) = bm(y, x)2h4 +
σ2
m(y, x)

Th2
.

Given a bandwidth function h(y), the MSE-optimal bandwidth ratio hx solves

∂MSET (y, x)

∂cx
= 2µ2(K)

(
mxx(y, x)− β2

01m(y, x)
)
cxbm(y, x)h4 − 1

cx

σ2
m(y, x)

Th2
= 0.
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Bashtannyk and Hyndman (2001, Thm. 1) shows that for given hy,

argmin
hx

AMSE(m(y, x), m̂(y, x)) = argmin
hx

AMSE(m̃(y, x), m̂(y, x)).

where m̃(y, x) ≡ E
(
Kh(Rt+1−y)
qt(Rt+1)

| xt = x
)
. The latter equals

AMSE(m̃(y, x), m̂(y, x)) = b̃(y, x)2h4x +
σ̃2(y, x)

Thx
,

where σ̃2(y, x) = R(K)
f(x) Var

(
Kh(Rt+1−y)
qt(Rt+1)

| xt = x
)
. Integrating over y, ˜IMSE(x) =

∫
˜MSE(y, x)f(y)dy

is optimized by

h
˜IMSE

x (x) =

( ∫
σ̃2(y, x)f(y)dy

T
∫
b̃(y, x)2f(y)dy

) 1
5

, (16)

where b̃(y, x) = µ2(K)
2

(
m̃xx(y, x)− β̃2

01m̃(y, x)
)
. We can estimate the derivatives in the bias term

using an initial exponential quadratic fit for every y: m̃(y, x, θ) = exp
(
θ0(y) + θ1(y)x+ θ2(y)x

2
)
.

Note m̃xx(y, x; θ)− β̃01(θ)
2m̃(y, x; θ) = θ2(y)m̃(y, x; θ). In particular, define

ˆ̃
θ(y) = argmin

θ

1

T

T∑
t=1

(
Kh(Rt+1 − y)

qt(Rt+1)
− exp

(
θ0(y) + θ1(y)xt + θ2(y)x

2
t

))2

,

and estimate σ̃2(y, x) by

ˆ̃σ2(y, x) =
1

T

T∑
t=1

(
Kh(Rt+1 − y)

qt(Rt+1)
− exp

(
ˆ̃
θ0(y) +

ˆ̃
θ1(y)xt +

ˆ̃
θ2(y)x

2
t

))2

wT (xt, x),

and its weighted integral over y by σ̃2(x) =
∫
ˆ̃σ2(y, x)f̂h(y)dy. The weights wT (xt, x) require a

pilot bandwidth, for example based on nearest-neighbors.

4.3.4 Results

We now fit the local exponential linear model (9) with covariate xt = b̂t2, standardized to mean

zero and variance one. To compute the plug-in bandwidth (16), we initially fit the exponential-

quadratic regression of Kh(Rt+1−y)
qt(Rt+1)

on xt for any y. Figure 10a) shows the resulting fit, whose

curvature explains most of the variation in x of the plug-in bandwidth in Figure 10b).

Figure 11 shows the estimated (inverse) conditional pricing kernels given the net variance de-

mand proxies. When net variance demand is low, defined as its 25% percentile, the pricing kernel

shows a similar asymmetric U-shape as when estimated without covariates, with a pronounced

downward sloping left tail. Low demand is thus associated with overpriced left tail insurance.
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(a) Initial exp-quadratic fit.
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(b) Plug-in optimal bandwidth h
˜IMSE

x .

Figure 10: Initial exponential-quadratic fit in x of the inverse pricing kernel given y using band-
width ĥIMSE

y , and resulting h
˜IMSE

x , using data from 1996-2017.

Meanwhile, when the demand variance proxy is at its 75% percentile, the pricing kernel’s left

tail no longer clearly slopes downward. Thus high net variance demand, such as observed in the

years before the financial crisis, is not associated with overpriced tail risks.
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(a) Inverse conditional pricing kernels.
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(b) Conditional pricing kernels.

Figure 11: Local exponential-linearly estimated pricing kernels (in right panels, inverse on left)
conditional on net variance demand proxies at 25% and 75% percentiles, using data from 1996-
2017. CIs based on plug-in standard errors and delta-method for the pricing kernel.
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5 Conclusion

This paper propose a simple kernel-smoothing estimator of the multiplicative bias component

in a general class of models for the ratio between observed and true conditional densities. The

estimator is based on inverse density weighting, and we establish its asymptotic bias, variance,

and Normality, in settings with and without conditioning variables. We also show how to per-

form inference on the multiplicatively corrected density forecasts. Our simulation study reports

good performance of the estimator, even relative to the correctly specified parametric maxi-

mum likelihood estimator. We apply the estimator to extract conditional pricing kernels from

option-implied risk-neutral densities for index returns. We find that low net variance demand

is associated with a particularly high pricing kernel for left tail returns, suggesting substantial

overpricing during times of financial market distress.

A Appendix

A.1 Proofs of results

Proof of Theorem 1. Given stationarity, the variance of the first term equals

Var
(
m̂(y)

)
=

1

T
Var

(
Kh(Rt+1 − y)

qt(Rt+1)

)
+

2

T

T−1∑
j=1

(
1− j

T

)
Cov

(
Kh(Rj+1 − y)

qj(Rj+1)
,
Kh(R1 − y)

q0(R1)

)
.

The variance term equals

1

T
Var

(
Kh(Rt+1 − y)

qt(Rt+1)

)
=

1

T
E

((
Kh(Rt+1 − y)

qt(Rt+1)

)2
)

− 1

T

(
E

(
Kh(Rt+1 − y)

qt(Rt+1)

))2

=
1

T
E

(∫ (
Kh(R− y)

qt(R)

)2

ft(R)dR

)
+O

(
1

T

)
=

1

T

∫
E

(
ct

qt(R)

)
K2

h(R− y)m(R)dR+O

(
1

T

)
=

1

Th
R(K)m(y)E

(
ct

qt(y)

)
+O

(
1

T

)
.

The covariance terms reflect temporal dependence induced by predictability of the normaliza-

tion constants ct. For t > s they can be written as

Cov

(
Kh(Rt+1 − y)

qt(Rt+1)
,
Kh(Rs+1 − y)

qs(Rs+1)

)
=

∫
Kh(R− y)m(R)dRCov

(
ct,

Kh(Rs+1 − y)

qs(Rs+1)

)
.
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By Davydov’s inequality for strong mixing processes

Cov

(
cj ,

Kh(R1 − y)

q0(R1)

)
≤ 8α(j)

δ
4+2δE(c2+δ

t )
1

2+δE

((
Kh(Rt+1 − y)

qt(Rt+1)

)2
) 1

2

.

Therefore, for some constant C > 0,

T−1∑
j=1

|Cov
(
Kh(Rj+1 − y)

qj(Rj+1)
,
Kh(R1 − y)

q0(R1)

)
| ≤

T−1∑
j=1

Cα(j)
δ

4+2δ
1√
h
= O

(
1√
h

)
. (17)

The summed covariance term is a factor
√
h smaller than the variance term, and thus vanishes

asymptotically.

For asymptotic normality, we employ the large and small blocks argument (e.g. Fan and Yao,

2003, Thm 2.22). Let Zt =
Kh(Rt+1−y)
qt(Rt+1)

− E
(
Kh(Rt+1−y)
qt(Rt+1)

)
and Zt,h =

√
hZt, and define large and

small block sizes lT and sT that grow to infinity

√
Th (m̂(y)− E (m̂(y))) =

1√
T

(
kT∑
i=1

ξi +

kT∑
i=1

ηi + ζT

)

≡ ml
T +ms

T + ξT ,

where the large and small blocks (ξi) and (ηi) alternate in summing lT and sT , respectively,

consecutive periods of Zt,h, kT = ⌊ T
lT+sT

⌋ is the number of blocks of each type, and ζT sums the

remaining periods. The block sizes should be set such that

sT /lT → 0, lT /T → 0,
T

lT
α(sT ) → 0, lT /

√
Th → 0 (18)

It can be verified that lT =
√
Th/ log T and sT =

(√
T/h log T

) δ
4+2δ

satisfy these conditions. In

particular,

sT
lT

=

(√
Th

4+3δ
3+δ

)− 3+δ
4+2δ

(log T )
4+3δ
4+2δ → 0,

as Assumption 1f) implies that T−1h−
4+3δ
3+δ = O(T−ε0) for some ε0 > 0. Therefore kT =

O(T/lT ) = O(
√
T/h log T ) = O(s

2+ 4
δ

T ). The mixing condition implies T 2+ 4
δα(T ) → 0, so that

kTα(sT ) → 0.

First, we show that the small blocks and the residual are asymptotically negligible as T → ∞.
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Let Ω(y) = R(K)m(y)E
(

ct
qt(y)

)
. Bound (17) implies that

T−1∑
j=1

|Cov(Z0,h, Zj,h)| → 0.

In combination with stationarity, this implies that Var (ms
T ) = kT sT

T Ω(y)(1 + o(1)) → 0 and

Var (ξT ) =
lT+sT

T Ω(y)(1 + o(1)) → 0, while

Var
(
ml

T

)
=

kT lT
T

Ω(y)(1 + o(1)) → Ω(y) (19)

We prove asymptotic normality using a truncation argument. For some fixed constant τ > 0,

let Zτ
t = Kh(Rt+1−y)

qt(Rt+1)
1(qt(Rt+1) ≥ τ) − E

(
Kh(Rt+1−y)
qt(Rt+1)

1(qt(Rt+1) ≥ τ)
)
, and let superscript τ

indicate that quantities sum over Zτ
t,h =

√
hZτ

t rather than Zt,h. Similar to (19), it can be shown

that

Var(mlτ
T ) → R(K)m(y)E

(
ct

qt(y)
1(qt(y) ≥ τ)

)
≡ Ωτ (y)

Var(ml
T −mlτ

T ) → R(K)m(y)E

(
ct

qt(y)
1(qt(y) < τ)

)
. (20)

Consider the following bound on the difference in characteristic functions of ml
T and the Normal

distribution:

∣∣∣E (exp(iuml
T

)
− exp

(
−u2Ω(y)/2

) ∣∣∣ ≤ ∣∣∣E (exp(iuml
T )
(
exp(iu(ml

T −mlτ
T ))− 1

)) ∣∣∣
+
∣∣∣E (exp(iumlτ

T )
)
−

kT∏
j=1

E
(
exp(iuξτj /

√
T )
) ∣∣∣

+
∣∣∣ kT∏
j=1

E
(
exp(iuξτj /

√
T )
)
− exp

(
−u2Ωτ (y)/2

) ∣∣∣
+
∣∣∣ exp (−u2Ωτ (y)/2

)
− exp

(
−u2Ω(y)/2

) ∣∣∣
We will show that the RHS terms converge to zero when first T → ∞ and then τ → 0. The first

term is bounded by E
(∣∣ exp(iu(ml

T −mlτ
T ))− 1

∣∣) = O
(
Var(ml

T −mlτ
T )
)
, which by (20) can be set

arbitrary small by setting small enough τ . The second term is bounded by 16(kT −1)α(sT ) using

the Volkonskii-Rozanov lemma, and thus converges to zero when T → ∞. Since |ξτj | ≤ ClT /
√
h
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as K(·) is bounded and has compact support,

1

T

kT∑
j=1

E
(
(ξτj )

21(|ξτj | > ε
√
T )
)
→ 0,

for any ε > 0, since {|ξτj | > ε
√
T} becomes an empty set almost surely as lT /

√
Th → 0. There-

fore 1√
T

∑T
j=1 ξ

τ
j → N(0,Ωτ (y)) by the Lindeberg-Feller central limit theorem, treating (ξj) as

independent, so that the third term vanishes when T → ∞. The fourth term becomes arbitrary

small when τ → 0. Therefore ml
T → N(0,Ω(y)), completing the proof.

Proof of Proposition 1. The error in estimating
∫
ω(y)m(y)dy equals

∫
ω(y) (m̂(y)−m(y)) dy = h2

∫
ω(y)

µ2(K)

2
m′′(y)dy + o(h2)

+
1

T

T∑
s=1

∫
ω(y)

(
Kh(Rs+1 − y)

qs(Rs+1)
− E

(
Kh(Rs+1 − y)

qs(Rt+s)

))
dy.

The first term is the leading bias term, while the variance of the estimation error equals

Var

(
1

T

T∑
s=1

∫
ω(y)Kh(Rs+1 − y)dy

qs(Rs+1)

)
= Var

(
1

T

T∑
s=1

ω(Rs+1) +
µ2(K)

2 ω′′(Rs+1)h
2 + op(h

2)

qs(Rs+1)

)

= Var

(
1

T

T∑
s=1

ω(Rs+1)

qs(Rs+1)

)
+O(h2) → Ωω.

The long-run variance Ωω is finite by a similar application of Davydov’s inequality to Cov
(

ω(Rs+1)
qs(Rs+1)

, ω(Rt+1)
qt(Rt+1)

)
as in the proof of Theorem 1. The result now follows from a central limit theorem for strong

mixing processes, e.g. Herrndorf (1984).

Proof of Corollary 1. Write

f̂t(y)− ft(y) = qt(y) (ĉtm̂(y)− ctm(y))

= qt(y) (ct(m̂(y)−m(y)) + (ĉt − ct)m(y)− (ĉt − ct)(m̂(y)−m(y))) .

A second-order Taylor expansion around the true inverse normalization constant yields

ĉt − ct =
1

ĉ−1
t

− 1

c−1
t

=
−1

c−2
t

(
ĉ−1
t − c−1

t

)
+Op

(
(ĉ−1

t − c−1
t )2

)
.
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The asymptotic bias of the inverse normalization constant estimator equals

ĉ−1
t − c−1

t =

∫
qt(y) (m̂(y)−m(y)) dy

= h2
∫

qt(y)
µ2(K)

2
m′′(y)dy + op(h

2) +Op

(
T− 1

2

)
,

= h2Bc + op(h
2),

using Proposition 1 in the second step and the rate condition Th4 → ∞ in the last. Combining

the above equations with Theorem 1, we find

√
Th
(
f̂t(y)− ft(y)− qt(y)h

2
(
ctB(y)− c2tBcm(y)

)) d−→ ctqt(y)N(0,Ω(y)).

Dividing both sides by ft(y) = ctqt(y)m(y) yields the stated result.

Proof of Theorem 2. First, we show β̂
p−→ β0. Write

E

(
∂

∂β
QT (y, x, β)

)
= D(x, y, hx, β) +O(h2),

where

D(x, y, hx, β) = f(x)

∫ 1∑
j=0

(
∂j

∂jx
m(y, x)− exp (β·0)

)
(β·1hxu)

j exp(β·0)(1, hxu)K(u)du.

Then D(x, y, hx, β0) = 0, while D(x, y, hx, β) ̸= 0 for any β ̸= β0. Therefore we establish that β̂

is consistent by proving the uniform convergence

sup
β∈Θ

∥∥∥ ∂

∂β
QT (y, x, β)−D(x, y, hx, β)

∥∥∥ p−→ 0. (21)

By the mean-value theorem and Cauchy-Schwartz inequality, for j = 0, 1, and any β and β̃

∥∥∥ ∂

∂βj
QT (y, x, β)−

∂

∂βj
QT (y, x, β̃)

∥∥∥ ≤ ∥β − β̃∥ sup
β∈Θ

∥∥∥∂2QT (x, y, β)

∂βj∂βT

∥∥∥.
The Hessian is given by

∂2QT (x, y, β)

∂β∂βT
= − 2

T

T∑
t=1

(
Kh(Rt+1 − y)

qt(Rt+1)
− 2 exp

(
βT x̃t

))
exp

(
βT x̃t

)
x̃tx̃

T
t Khx(xt − x).
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Let βu
·j and βl

·j denote the largest and smallest value of βj in Θ for j = 0, 1. Since

E

(
sup
β∈Θ

∣∣∣∂2QT (x, y, β)

∂2β0

∣∣∣) ≤ 2E

(
sup
β∈Θ

∣∣∣Kh(Rt+1 − y)

qt(Rt+1)
− 2 exp

(
βT x̃t

) ∣∣∣ exp (βT x̃t
)
Khx(xt − x)

)

≤ 2E

(
sup
β∈Θ

Kh(Rt+1 − y)

qt(Rt+1)
exp

(
βT x̃t

)
Khx(xt − x)

)

+ 4E

(
sup
β∈Θ

exp
(
2βT x̃t

)
Khx(xt − x)

)

≤ 2E

(
E

(
Kh(Rt+1 − y)

qt(Rt+1)
| xt
)
exp

(
βu
·0 + (|βu

·1 + |βl
·1|)|xt − x|

)
Khx(xt − x)

)
+ 4E

(
exp

(
2βu

·0 + 2(|βu
·1 + |βl

·1|)|xt − x|
)
Khx(xt − x)

)
= O(1),

it follows that supβ∈Θ
∂2QT (x,y,β)

∂2β0
= Op(1). Other elements of the Hessian are of smaller stochastic

order, so that supβ∈Θ

∥∥∥∂2QT (x,y,β)
∂2β0

∥∥∥ = Op(1). Therefore ∂
∂βQT (y, x, β) is stochastically equicon-

tinuous, which confirms (21) using Newey (1991, Corollary 2.2).

Consistency and β0 being an interior point imply that 0 = ∂
∂βQT (y, x, β̂) with probability

approaching one. By the mean-value theorem,

0 =
∂

∂β
QT (y, x, β̂) =

∂

∂β
QT (y, x, β0) +

∂2QT (x, y, β
∗)

∂β∂βT
(β̂ − β0), (22)

for some β∗ such that β∗
j lies in between β̂j and β0,j almost surely. Re-arranging (22) and scaling

by
√
Th2H−1 yields

√
Th2H

(
β̂ − β0

)
= AT (x, y, β

∗)−1
√
Th2ST (x, y, β0),

where

AT (x, y, β) = H−1∂
2QT (x, y, β)

∂β∂βT
H−1

ST (x, y, β) = −H−1 ∂

∂β
QT (y, x, β).

The proof consists of two main steps showing that (1) AT (x, y, β∗) converges to a positive-definite

limit matrix, and (2)
√
Th2ST (x, y, β0) satisfies a multivariate central limit theorem.

Step (1): Write

AT (x, y, β∗) = RT1 (x, β0) + {RT1 (x, β
∗)−RT1 (x, β0)}+RT2 (x, y, β

∗) ,
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where

RT1 (x, β) =
2

T

T∑
t=1

exp
(
2βT x̃t

)
H−1x̃t

(
H−1x̃t

)T
Khx (xt − x) ,

RT2(x, y, β) = − 2

T

T∑
t=1

{
Kh(Rt+1 − y)

qt(Rt+1)
− exp

(
βT x̃t

)}
exp

(
βT x̃t

)
H−1x̃t

(
H−1x̃t

)T
Khx (xt − x) .

Let ∥ · ∥ denote the Euclidean norm of a vector or matrix. We will show below that

∥RT1 (x, β0)−AT0(x)∥ = op(hx), (23a)

∥RT1 (x, β
∗)−RT1 (x, β0)∥ = op(1), (23b)

∥RT2(x, y, β
∗)∥ = op(1), (23c)

where AT0(x) is a positive-definite limit matrix given below.

Using second-order Taylor expansions around xt = x, the means of the terms in RT1(x, β0)

are

E
(
exp

(
2βT

0 x̃t
)
Khx (xt − x)

)
=

∫
exp (2β00 + 2β01(xt − x))Khx (xt − x) f(xt)dxt

=

∫
exp (2β00 + 2β01hxz)K (z) f(x+ zhx)dz

= m(y, x)2f(x) +O(h2x),

E

(
exp

(
2βT

0 x̃t
)(xt − x

hx

)
Khx (xt − x)

)
=

∫
exp (2β00 + 2β01hxz) zK (z) f(x+ zhx)dz

= m(y, x)2µ2(K)
(
2β01f(x) + f ′(x)

)
hx +O(h3x),

and

E

(
exp

(
2βT

0 x̃t
)(xt − x

hx

)2

Khx (xt − x)

)
=

∫
exp (2β00 + 2β01hxz) z

2K (z) f(x+ zhx)dz

= m(y, x)2µ2(K)f(x) +O(h2x).

Therefore,

E (RT1 (x, β0)) = 2m(y, x)2

 f(x) µ2(K)r12(x)hx

µ2(K)r12(x)hx µ2(K)f(x)

+

O
(
h2x
)

O
(
h3x
)

O
(
h3x
)

O
(
h2x
)
 ≡ AT0(x)+O(h2x),
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where r12(x) = 2β01f(x) + f ′(x). Furthermore, the variance of each element in RT1(x, β0) is

O
(

1
Thx

)
under the mixing condition. Therefore (23a) follows under the bandwidth condition

2g).

By the mean-value theorem, there exists some β̃ in between β∗ and β0 such that

RT1 (x, β
∗)−RT1 (x, β0) =

4

T

T∑
t=1

(β∗ − β0)
T x̃t exp

(
2β̃T x̃t

)
H−1x̃t

(
H−1x̃t

)T
Khx (xt − x) .

Therefore (23b) follows from

E (∥RT1 (x, β
∗)−RT1 (x, β0) ∥)

≤ 4E
(
∥ (β∗ − β0)

T x̃t exp
(
2β̃T x̃t

)
H−1x̃t

(
H−1x̃t

)T
Khx (xt − x) ∥

)
(24)

≤ 4∥β∗ − β0∥
∫

∥(1, zhx)∥E
(
exp

(
2β̃T (1, zhx)

))
∥z̃z̃T ∥K (z) f(x+ zhx)dz

→ 0,

using the triangle inequality and stationarity in the first step, the Cauchy-Schwartz inequality,

properties of K, compact support of β̃, and Fubini’s Theorem in the second, and consistency of

β∗ in the third.

To establish (23c), write

RT2(x, y, β) = − 2

T

T∑
t=1

{
Kh(Rt+1 − y)

qt(Rt+1)
−m(y, xt)

}
exp

(
βT x̃t

)
H−1x̃t

(
H−1x̃t

)T
Khx (xt − x)

− 2

T

T∑
t=1

{
m(y, xt)− exp

(
βT x̃t

)}
exp

(
βT x̃t

)
H−1x̃t

(
H−1x̃t

)T
Khx (xt − x)

≡ TT1(x, y, β) + TT2(x, y, β).

Using second-order expansions, E (TT1(x, y, β)) = O(h2) for any β, while E (TT2(x, y, β0)) =

O(h2x). Furthermore, Var (TT1(x, y, β)) = O
(

1
Th2

)
and supβ∈Θ

∂
∂βTT1(x, y, β) = Op (1), so that

TT1(x, y, β)
p−→ 0 uniformly over β. Moreover, Var (TT2(x, y, β0)) = O

(
1
T

)
, and ∥TT2(x, y, β

∗) −

TT2(x, y, β0)∥ = op(1) using similar steps as (24). Therefore ∥TTj(x, y, β
∗)∥ = op(1) for j = 1, 2,

implying (23c).

Step (2): Write ST (x, y, β0) as

ST (x, y, β0) = 2m(y, x) (ST1 (x, y, β0) + ST2 (x, y, β0) + ST3 (x, y, β0)) ,
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where, writing x̃t,h =
(
1, xt−x

hx

)T
,

ST1 (x, y, β0) =
1

T

T∑
t=1

ut+1,hx̃t,hKhx (xt − x) ,

ST2 (x, y, β0) =
1

T

T∑
t=1

ut+1,h (exp (β01(xt − x))− 1) x̃t,hKhx (xt − x) ,

ST3 (x, y, β0) =
1

T

T∑
t=1

{
E

(
Kh(Rt+1 − y)

qt(Rt+1)
| xt
)
− exp

(
βT
0 x̃t
)}

exp (β01(xt − x)) x̃t,hKhx (xt − x) ,

with ut+1,h = Kh(Rt+1−y)
qt(Rt+1)

−E
(
Kh(Rt+1−y)
qt(Rt+1)

| xt
)
, so that E (ST1 (x, y, β0)) = E (ST2 (x, y, β0)) = 0.

We will show below that

√
Th2ST1 (x, y, β0)

d−→ N(0, V (x, y)) , (25a)∥∥∥√Th2ST2 (x, y, β0)
∥∥∥ = Op(h), (25b)∥∥ST3 (x, y, β0)− h2Ha(x, y)

∥∥ = Op

(
h4
)
, (25c)

where V (x, y) = c−1
x R0(K)m(y, x)diag(R0(K), R2(K))E

(
ct

qt(y)
| xt = x

)
f(x), with Rj(K) =∫

zjK2(z)dz for any integer j, and a(x, y) is given below.

Given stationarity,

Var
(√

Th2ST1 (x, y, β0)
)
= h2Var (ut+1,hx̃t,hKh(xt − x))

+ 2h2
T−1∑
j=1

(
1− j

T

)
Cov (uj+1,hx̃j,hKh(xj − x), u1,hx̃0,hKh(x0 − x)) .

The variance term equals

h2Var (ut+1,hx̃tKhx(xt − x)) = h2E

(
Var

(
Kh(Rt+1 − y)

qt(Rt+1)
| xt
)
x̃t,hx̃

T
t,hK

2
hx
(xt − x)

)
= h2E

(
E

(∫ (
Kh(R− y)

qt(R)

)2

ft(R)dR | xt

)
x̃t,hx̃

T
t,hK

2
hx
(xt − x)

)
+O(hy)

= h2E

(∫
E

(
ct

qt(R)
| xt
)
K2

h(R− y)m(R, xt)dRx̃t,hx̃
T
t,hK

2
hx
(xt − x)

)
+O(hy)

=

∫∫
E

(
ct

qt(R)
| xt = x+ hxz

)
K2(u)m(y + hyu, x+ hxz)duz̃z̃

TK2(z)f(x+ hxz)dz +O(hy)

= V (x, y) +O(h).
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By the LIE,

Cov (uj+1,hx̃j,hKh(xj − x), u1,hx̃0,hKh(x0 − x))

= E

((∫
Kh(R− y)

qj(R)
fj(R)dR− E

(
Kh(Rj+1 − y)

qj(Rj+1)
| xj
))

x̃j,hKh(xj − x)u1,hx̃0,hKh(x0 − x)

)
= Cov

(∫
Kh(r − y)m(r, xj)dr (cj − 1) x̃j,hKh(xj − x), u1,hx̃0,hKh(x0 − x)

)
.

By Davydov’s inequality for strong mixing processes

Cov ((cj − 1) x̃j,hKh(xj − x), u1,hx̃0,hKh(x0 − x))

≤ 8α(j)
δ

2+δE
(
|(cj − 1) x̃j,hKh(xj − x)|2+δ

) 1
2+δ

E
(
(u1,hx̃0,hKh(x0 − x))2

) 1
2

≤ Cα(j)
δ

2+δE
(
|cj − 1|2+δ K2+δ

h (xj − x)
) 1

2+δ
E
(
Var (u1,h | xt)K2

h(x0 − x)
) 1

2 I2

≤ Cα(j)
δ

2+δ h
− 1+δ

2+δ
x (hyhx)

− 1
2 I2.

Therefore, for some constant C > 0,

T−1∑
j=1

∥Cov (uj+1,hx̃j,hKh(xj − x), u1,hx̃0,hKh(x0 − x))∥ ≤ Ch−
3+2δ
2+δ

T−1∑
j=1

α(j)
δ

2+δ = O
(
h−

3+2δ
2+δ

)
,

which is of smaller order than the O(h−2) variance term.

Asymptotic normality of ST1(x, y, β0) follows a similar large-small block argument as used for

Theorem 1. The block sizes lT =
√
Th/ log T and sT =

(√
T
h log T

) δ
2+δ

satisfy the conditions in

(18). In particular,
sT
lT

=
(√

Th1+δ
)− 2

2+δ
(log T )

2+2δ
2+δ → 0,

as Assumption 2g) implies that T− 1
2h−1−δ = O(T−ε0) for some ε0 > 0. Therefore kT =

O(T/lT ) = O
(√

T
h log T

)
= O

(
s
1+ 2

δ
T

)
. The mixing condition implies T 1+ 2

δα(T ) → 0, so that

kTα(sT ) → 0.

Meanwhile element-wise second-order mean-value expansions of exp(β01(xt−x))x̃t yield some

x∗t between xt − x and 0 such that

ST2 (x, y, β0) =
1

T

T∑
t=1

ut+1,h exp(β01x
∗
t )

 β01

2β01 + β2
01x

∗
t

 (xt − x) x̃t,hKhx (xt − x) ,

using ∂
∂x exp(βx)x = exp(βx) (1 + βx) and ∂2

∂2x
exp(βx)x = β exp(βx) (2 + x). Using similar steps
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as for ST1 (x, y, β0), it follows that Var (ST2 (x, y, β0)) = O
(

h2
x

Th2

)
= O

(
1
T

)
.

Performing second- and third-order Taylor expansions for the constant and slope term, re-

spectively, in ST3(x, y, β0) allows obtaining its leading terms as

ST3 (x, y, β0) =
1

2T

T∑
t=1

{
µ2(K)myy(y, xt)h

2 +
(
mxx(y, x)− β2

01m(y, x)
)
(xt − x)2 + µ2(K)myyx(y, x)(xt − x)

+
1

3

(
mxxx(y, x)− β3

01m(y, x)
)
(xt − x)3

}
(1 + β01(xt − x)) x̃t,hKhx(xt − x) +Op(h

4),

=
1

2
h2H


µ2(K)f(x)

(
myy(y, x) +

(
mxx(y, x)− β2

01m(y, x)
)
c2x
)
+Op(h

2)(
µ2
2(K)myyx(y, x)cx +

1
3µ4(K)

(
mxxx(y, x)− β3

01m(y, x)
)
c3x
)
f(x)

+
(
µ2
2(K)myy(y, x)cx + µ4(K)

(
mxx(y, x)− β2

01m(y, x)
)
c3x
)
(β01f(x) + f ′(x)) +Op(h),


≡ h2Ha(y, x) +Op(h

4).

where the term β01f(x) + f ′(x) in a2(y, x) stems from first-order expansions of exp(β1(xt − x))

and f(x).

Combining results from Steps (1) and (2), the asymptotic bias of β̂ equals

E
(
β̂ − β0

)
= H−1AT0(x)

−12m(y, x)h2Ha(x, y) + o(h2)

= h2m(y, x)−1f(x)−1

 1 −f(x)−1r12(x)hx

−f(x)−1r12(x) µ2(K)−1h−1
x


 a1(x, y)

ha2(x, y)

+ o(h2)

= h2m(y, x)−1f(x)−1

 a1(x, y)

−f(x)−1r12(x)a1(x, y) + c−1
x µ2(K)−1a2(x, y)

+ o(h2)

≡ h2b(x, y) + o(h2),

while its asymptotic variance equals

Var

(
1√
Th2

(β̂ − β0)

)
= AT0(x)

−14m(y, x)2V (x, y)AT0(x)
−1 + o(1)

= m(y, x)−1f(x)−1c−1
x R0(K)diag(R0(K), R2(K)/µ2

2(K))E

(
ct

qt(y)
| xt = x

)
≡ Ω(x, y) + o(1).
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A.2 Further simulation results

Table 3: Simulation performance of various estimators under exponential-quartic pricing kernel,
based on S = 10, 000 simulated time series of densities and returns according to two models.
Optimal bandwidths chosen based on exponential-quadratic fit. Columns describe integrated
weighted squared bias, variance, and mean squared error, truncated at the (0.025,0.975)-quantiles
of the return distribution, for three numbers of months T .

(a) AR(1)-GARCH(1,1)-t-model

T = 60 T = 120 T = 240

m̂ IBias2 IVar IMSE IBias2 IVar IMSE IBias2 IVar IMSE

exp-quart 0.16 4.09 4.25 0.08 1.82 1.90 0.03 0.78 0.81

h-par 0.33 12.38 12.71 0.29 6.07 6.35 0.15 11.73 11.87

h-par iter 0.25 4.03 4.29 0.15 2.07 2.22 0.08 1.11 1.19

h-par trim 0.39 3.18 3.56 0.38 1.51 1.89 0.30 0.75 1.05

h-pilot 0.17 3.84 4.01 0.09 2.11 2.20 0.08 1.04 1.12

h-pilot iter 0.16 4.06 4.22 0.08 2.25 2.33 0.06 1.11 1.17

h-pilot trim 0.22 3.65 3.87 0.20 1.95 2.14 0.20 0.92 1.13

(b) Bates (2000) stochastic volatility-model.

T = 60 T = 120 T = 240

m̂ IBias2 IVar IMSE IBias2 IVar IMSE IBias2 IVar IMSE

exp-quart 0.13 2.95 3.08 0.05 1.26 1.31 0.02 0.53 0.55

h-par 0.37 6.70 7.07 0.33 4.59 4.91 0.19 1.93 2.12

h-par iter 0.28 3.25 3.53 0.17 2.26 2.42 0.06 1.16 1.21

h-par trim 0.35 2.70 3.05 0.33 1.49 1.82 0.19 0.66 0.85

h-pilot 0.18 2.78 2.96 0.09 1.85 1.94 0.04 1.03 1.06

h-pilot iter 0.13 2.91 3.04 0.08 1.93 2.01 0.03 1.09 1.12

h-pilot trim 0.16 2.61 2.76 0.13 1.65 1.78 0.07 0.82 0.89
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